2️⃣Zero-shot Classification
Zero-shot Classification
Import Transformer
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline/home/kubwa/anaconda3/envs/pytorch/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdmTokenizer & Model
tokenizer = AutoTokenizer.from_pretrained("MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
model = AutoModelForSequenceClassification.from_pretrained("MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")tokenizer_config.json: 100%|██████████| 1.28k/1.28k [00:00<00:00, 2.60MB/s]
spm.model: 100%|██████████| 2.46M/2.46M [00:01<00:00, 2.10MB/s]
tokenizer.json: 100%|██████████| 8.66M/8.66M [00:01<00:00, 6.38MB/s]
added_tokens.json: 100%|██████████| 23.0/23.0 [00:00<00:00, 49.3kB/s]
special_tokens_map.json: 100%|██████████| 286/286 [00:00<00:00, 804kB/s]
config.json: 100%|██████████| 1.09k/1.09k [00:00<00:00, 3.62MB/s]
model.safetensors: 100%|██████████| 369M/369M [00:21<00:00, 17.3MB/s] Pipeline
Inference
Multi-label Classification
Single-label Classification
Last updated